Studies of universe’s expansion win physics nobel

Studies of Universe’s Expansion Win Physics Nobel


Three astronomers won the Nobel Prize in Physics on Tuesday for discovering that the universe is apparently being blown apart by a mysterious force that cosmologists now call dark energy, a finding that has thrown the fate of the universe and indeed the nature of physics into doubt.

The astronomers are Saul Perlmutter, 52, of the Lawrence Berkeley National Laboratory and the University of California, Berkeley; Brian P. Schmidt, 44, of the Australian National University in Canberra; and Adam G. Riess, 41, of the Space Telescope Science Institute and Johns Hopkins University in Baltimore.

“I’m stunned,” Dr. Riess said by e-mail, after learning of his prize by reading about it on The New York Times’s Web site.

The three men led two competing teams of astronomers who were trying to use the exploding stars known as Type 1a supernovae as cosmic lighthouses to limn the expansion of the universe. The goal of both groups was to measure how fast the cosmos, which has been expanding since its fiery birth in the Big Bang 13.7 billion years ago, was slowing down, and thus to find out if its ultimate fate was to fall back together in what is called a Big Crunch or to drift apart into the darkness.

Instead, the two groups found in 1998 that the expansion of the universe was actually speeding up, a conclusion that nobody would have believed if not for the fact that both sets of scientists wound up with the same answer. It was as if, when you tossed your car keys in the air, instead of coming down, they flew faster and faster to the ceiling.

Subsequent cosmological measurements have confirmed that roughly 70 percent of the universe by mass or energy consists of this antigravitational dark energy that is pushing the galaxies apart, though astronomers and physicists have no conclusive evidence of what it is.

The most likely explanation

for this bizarre behavior is a fudge factor that Albert Einstein introduced into his equations in 1917 to stabilize the universe against collapse and then abandoned as his greatest blunder.

Quantum theory predicts that empty space should exert a repulsive force, like dark energy, but one that is 10 to the 120th power times stronger than what the astronomers have measured, leaving some physicists mumbling about multiple universes. Abandoning the Einsteinian dream of a single final theory of nature, they speculate that there are a multitude of universes with different properties. We live in one, the argument goes, that is suitable for life.

“Every test we have made has come out perfectly in line with Einstein’s original cosmological constant in 1917,” Dr. Schmidt said.

If the universe continues accelerating, astronomers say, rather than coasting gently into the night, distant galaxies will eventually be moving apart so quickly that they cannot communicate with one another and all the energy will be sucked out of the universe.

Edward Witten, a theorist at the Institute for Advanced Study, Einstein’s old stomping grounds, called dark energy “the most startling discovery in physics since I have been in the field.” Dr. Witten continued, “It was so startling, in fact, that I personally took quite a while to become convinced that it was right.”

He went on, “This discovery definitely changed the way physicists look at the universe, and we probably still haven’t fully come to grips with the implications.”


1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)

Studies of universe’s expansion win physics nobel